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Generation of nondiffracting beams by spiral fields
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In this paper we demonstrate that spiral fields generate nondiffracting dark beams. A collimated laser beam
incident on a compact disc, i.e., a commercial CD, was used as mask for the generation of spiral fields. We
study theoretically and experimentally the intensity distribution near the axis of the optical system.
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. INTRODUCTION mum radiusRy., andR i, respectively(see Fig. 1 A cut of
this plate through the center shows a periodic profile with
Optical beams of Bessel-type whose transverse intensitgeriodr. In principle, a periodic profile in the radial direc-

profile remains unchanged under free-space propagation atien (r) can be mathematically described through an expres-
called nondiffracting beam§l-3]. Over the last decade, sion of the form
nondiffracting beams were intensively investigated for their
unusual properties, such as self-imaging properties, wave
front dislocations(optical vortice$, robustness against ob- E Cpexp2minr/ry),
stacles in the propagation path, and their various applica- n=o
tions, e.g., particle trapping, accurate path tracers, optical . . . .
interconr?ect?ons, and relp())reg recently appplications in othica . ith ¢, being complex constants. Now, making the substitu-

microlithography in which significant increase in depth of lon 27irrrllr0r—>f2iITr(\:/lri(c)i)f_fV\Illevwllll obtaflrt1han e>|<prresnS|on for
focus becomes especially useful for the fabrication of contacﬁhe spiral profiie valid for-all values of thé polar a .993.
Therefore, the general expression for the transmission fac-

holes[4-7]. Nondiffracting beams can be generated usin : )
annular apertures placed in the back focal plane of a lens, b r(r.6) of this plate will be
special conical optical elements known as axicons, holo- o
grams, diffractive elements, ef@-14). _ P\ _

It is worth noting that to actually generate a nondiffracting t(r ) =[H(r = Run) —H(r Rma")]n;x Co
beam one should have a Bessel-beam of infinite extent, ) )
which in turn requires infinite energy. Thus, in real situations Xexd 2min(r/ro)—ind]. @

one obtains an approximation to a nondiffracting beam. Such o ]
beams are usually callegseudo-non-diffractingbeams, ~TNiS transmission factor modulates phase and/or amplitude

which from the above discussion are characterized by aRf 'the fields dep'end.ing on the details of construction of the
almost constant intensity profile over a finite region. spiral plate, Whlch_ in turn determ_mates_ the values of the
In this paper we demonstrate that electric fields with aconstantsc,. H(r) is thestep functiondefined asH(r)=1
spiral amplitude and/or phase modulation generate nondifor r>0 and H(r)=0 elsewhere. Thus the factgH(r
fracting dark beamsgmore preciselypseudo-non-diffracting
beams. It is important to mention that in the literature the
term “spiral field” refer to a field whose wave fronts are
helical surfaces with axis along the propagation direction
direction. In this context, a “spiral phase plate” means a
plate with growing width proportional to the polar angle
(see, e.g., Ref5], and the references thergi©On the other
hand, through the present paper the term “spiral plate” refers
to a plate with a spiral groove engraved on its surfaee, a
spiral on the(x,y) plang and a “spiral field” will be the
result of modulating a plane wave with such a méste the
next section We perform validation experiments using a |
compact disc, i.e., a commercial CD, as diffractive element |
for the generation of spiral fields and study the intensity
distribution in the neighborhood of the axis of the system.

©

Il. THEORY

Let us consider a semitransparent plate engraved with a FIG. 1. Mask engraved with a spiral grooveMfturns of pitch
spiral groove ofN turns of pitchrg (i.e., ro is the radial  r, with maximum and minimum radiu&,,,andRy,, respectively.
distance between adjacent turnwith maximum and mini-  In this figureN=8, but actuallyN could be arbitrarily large.
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—Ryin)—H(r—Rya)] in Eq. (1) takes in account the fact that  After the plate the diffracted field distribution will have
the transmission is zero outside of the regi®y,,<r  two parts:
gIQ’(T‘I/‘E,[X'

Let us now consider a plane wavweavelength\) with E(r',0",2)=Eaperur! ', 0",2) + Eqpira 1, 60",2),  (2)
electric field amplitudeE, propagating along the axis, or-
thogonal to the plane of the plate. The plate with transmiswhereE,enyreiS the field diffracted by a homogeneous an-
siont(r,#) is placed atz=0. nular aperturgi.e., the term withn=0 in Eq. (1)],

EOCO exp(i Tl ,2/)\2) meax

2m
Eaperuré! ', 0",2) = iz fo eX[I(iﬂTl’zl)\Z)

Rmin

Xexd —i2m(rr’'/Nz)cog 6—6")]rd odr, (3)

and Egpirq is the diffracted field due to the terms with#0 in Eq. (1),

©

Zl meaxf:”{Cn exd2min(rirg)—in@]+c_,exd —2min(r/rg)+ind]}

Rmin

Eoexplimr'2/\z)
iNzZ

Espira(rlyalaz):
xexp(imrlInz)exd —i2m(rr’/xz)cog 6—6')]rd odr. (4)
The diffracted field due to an annular aperture—Ef)—is well known, and a detailed discussion can be found in the

literature[15]. The objective of the present paper focuses on the expre&bion
It is convenient to write

oo

Espira(r,aa,vz):nzl En(r',6',2),
with

E,(r',0",2)=

Eoexplimr'2/INz) (Rmax (27 _ _ . .
f . {chexd2min(r/rg)—iné]+c_,exd —2min(r/rg) +in6]}

iNz

Rmin

xexplimré/nz)exd —i2a(rr'/Nz)cog 6— ") ]rd odr. (5)

Each of the partial field&, represents the diffracted field by théh mode of the Fourier decomposition of the spiral groove.
Performing the integration in the variabée results in

Eoexplimr'2/Nz)mi "

En(r',0",2)= 7

Rm X
{cn exq—ine’)j “exti(mr2/nz+2mnrlry)]
Rmin
Rmax
><Jn(27rrr’/)\z)rdr+c_nexp(in0’)f exfi(wr2Inz—2mnrirg) ]I (2arr ' INZ)rdr |, (6)
min
whereJ, is the Bessel function of first kind and order
This expression is still too complicated to obtain an exact analytical solution in closed form. To obtain an approximate
solution, it is convenient to rewrite the above expression in terms of adimensional parameters.
We shall make the following substitutions:
r—Rr, r'—=xr’, z—Rz (7
whereR=1 cm and thenew 1, r’ andz are now adimensional parameters. Also, let us define the adimensional parameters
a=R/ry, b=rg/\. 8

Using the above defined adimensional parameters, the exprégsican be rewritten as
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Ecabexp(imr'?/abz) i~

(Y _
En(r',6',2) =

Rmax/R

+c_nexp(in9’)f

Rmin/R

Specifically, we shall consider a spiral with a large number

of turns(e.g.,N~ 10* or even larger Thus,r, will be of the
order of microns and the parame@{=R/r,~N) will be
very large. For large values @f the integral(9) can be ap-
proximated as an asymptotic expansionan®? being k
=1,2,..., using thenethod of the stationary pha$&6,17].
The two integrals appearing in E9) are of the general
form

En(r’,a’,z)=fo(r)exp[ia,u(r)]dr, (10
A

with f(r)=J,(27rr'/Z)r andu(r)=mbr?/z=2mnr. Since
w"(r)=const(with u"=d?u/dr?), the first two terms in the
asymptotic expansion aKsee, e.g., Ref.16] pp. 235-239

En(r',0",2)=[ml2au"(r1)]*?expiw/4)f(r;)
Xexdiaw(rq) ]+ (Lhia){f(B)
xXexdiau(B)]/n'(B)—f(A)

Xexdiaw(A)/p (A +---, (1D
whereu ' is the first derivative ofu andr is the root of the
equationu’(r)=0.

In the first integral in Eq.(9) we haveu(r)=mbr?/z
+2anr, then the root ofu’ (r)=0isr, nz/b. Since this
stationary point is not in the intervB{Rin/R),(Rnax/R) ], the

asymptotic expansion of this integral starts with the term in

1/a. On the other hand, for the second integral of &).we
have u(r)=mbr?/z—2mnr, and thusr;=nz/b. Since this
stationary point is interior to the integration interval when
(Rmin/R) <r1<(Rnax/R), the asymptotic expansion of the sec-
ond integral starts with the term in @A? for
(ro/NMN)Rpin<z<(ro/mM\)Ryax. Therefore, to first order in
(1/a)Y2 only the contribution of the second integral is impor-
tant.

From Eqgs.(9)—(11), for (ro/n\) Ryin<z<(ro/n\)Ryax We
can write

En(r',6',2)~nEqc_,mi~("T1
X exp(i wl4)(azl4b)Y?exp(in @)

xexp(—iamn?z/b)J,(27nr'/b)+---, (12)

exdia(mbré/z—
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n Rnax/R
r Ch,exp —in 6’)f exdia(abré/z+2mnr)]d,(2mrr ' /z)rdr
Rmin /R

2mnr)|J,(27rr ' [Z)rdr ¢ . (9

Now, making the back-transformation to dimensional pa-
rameters

r'—r’/IN, z—z/IR (13

[being thenew(r’,z)-dimensional parametgrand recalling
thata=R/ry, b=ry/\, to first order we can rewrite E¢l2)

as

En(r',0',2)=nEqc_,mi "1

X exp(i 7/4) (z\ 4r5) Y exp(in6”)

Xexp(—imn?z\/rd)d (27nr'Irg)  (14)

for

(ro/NN)Rmin<z<(ro/nNN\)Rpax- (15

The field is some orders of magnitude lower outside this
region[the exact amplitude of the field depends on the value
of (1/a)Y?.

Expression(14) shows that th@th mode propagates with-
out spreadindi.e., it is a nondiffracting beajrin the region
(ro/n\) Rpin<z<(ro/M\)Rnaxand it is negligible outside this
region. Thus, depending on the mode numggrone may
identify zones for each mode on tleaxis. Lower order
modes are located farther than higher ones, but it is clear that
different modes may overlap. One can expect abrupt inten-
sity changes at the frontiers of the modes due to different
c_, coefficients.

SinceJ,(0)=0 for n#0, the expressiofl4) describes a
“dark” nondiffracting beam with zero field amplitude on the
z axis. In general, the dominant terms in the Fourier series
shown in Eq.(1) are the terms witlin|<1. Thus, an estima-
tion of the width of the bright annulus around the dark region
centered on the axis can be done by recalling that the first
maximum ofJ,(27r'/rg) is for 27r'/ry=1.841. Then, the
bright annulus will have a radius’~0.3ry. Whenn in-
creases the first maximum df(2=nr’/ry) does not neces-
sarily translate towards larger values rdf but even forn
=10 the radius of the beam will not exceed Q.2

Note also that in generaR(,;,/nrp)>1, so in the region of
the z axis where the nondiffracting beam exists will be also

where the terms of higher order have amplitudes smaller tha(z)\/ré)l’2> 1. Therefore, from Eq(14) it is clear that the

the first order expression shown above by a factor)47 at
least. Thus, for large values af(e.g.,a~10% higher order
terms can be neglected.

intensity of the beam|E,|?) in the neighborhood of the axis
could be several orders of magnitude greater than the inten-
sity (|Eq|?) of the incident plane wave.
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— Nondiffracting
beam
Plane =
- | g wave [iEndimng
Collimated i ® s —
laser_b_e:m - . ¢
Z-axis
Digital camera >

with z motion
-

FIG. 2. Experimental setup. An expanded laser beam is incident —>
on a semitransparent mask with a spiral groove. The intensity dis- CD*™
tribution of the diffracted field is acquired with a digital camera
which hasz motion.

FIG. 3. Lateral cut of the intensity distribution along thaxis.
A narrow light beam in the central region of the image alongzhe
IIl. EXPERIMENTAL RESULTS axis is shown. We superposed white characters and lines to indicate

) the regions where the different modes can exist.
As phase and amplitude mask we have used a commercial

compact dis¢CD). CD’s have a thin layer of reflecting metal Figures 4a)—4(f) show the intensity distribution in a
covered by a semi-transparent layer of plastic. In recordablplane orthogonal to the axis for different distances to the
CDrs, in the interface plastic-metal there is an engravedCD. The figures correspond to following distancéa) z
(stamped, molded, or etchespiral whose detailed structure =3 cm, (b) z=6cm, (c) z=7cm, (d) z=9cm, (¢) z
depends on the fabrication process. The metal layer of a12 cm, and{f) z=14 cm.

recordable CD can be easily separated from the plastic cover. The images were acquired with a digital camera (244
This cover still retains soméamplitude and phagespiral  x 753 pixels) without lens. The size of a pixel is 138
information on its surface, and therefore, it can be used as & 11.5um. In all images the light beam is concentrated es-
semitransparent plate for the modulation of an incident plan@entially on the area of a pixel, and the light intensity decays
wave. rapidly in a couple of pixels around the central one. This is

The standard dimensions of commercial CD's &g,  consistent with the order of magnitude of the beam radius
=2.2+0.1 cm andR,;,=5.8+0.1 cm. The value of the spi-

ral pitch (rg) is an important parameter in our physical
model. The typical value mentioned in the literat(it8] is
ro=1.6 um. In simple diffraction experiments performed on
several of CD’s using a narrow laser beam, it was possible to
determine the actual distance between grooves. We found
that for the CD used in our experiments the value of the pitch
iSrg=15+0.1um.

A sketch of the setup to generate nondiffracting beams is
shown in Fig. 2. An expanded laser bean=0.532um) is

(a)
incident on the plastic cover of a CD placedzat0. From
the expression(15) we conclude that the mode=1 can
exist for 6.2 cm<z<16.4 cm, the moden=2 for 3.1 cm
<z<8.2 cm, the modea=3 for 2.1 cm<z<5.5 cm, and so
on.
Figure 3 shows a lateral cut of the intensity distribution -
Cc
(e

(b)

along thez axis. This image was acquired placing a sheet of (@
black paper in a plane orthogonal to the CD through its axis.
A very concentrated light beam is shown in the central re-
gion of the image along the axis. Superposed to the raw
image we have indicated with white characters and lines the
regions where the different modes can exist.

The image shows that an intense narrow light beam ex-
tends fromz=2 cm toz=16 cm without apparent broaden-
ing, which is in good agreement with the calculated maxi-
mum and minimum values of for the modes froomn=1 to
n=23. The abrupt intensity change &t 6 cm coincides very FIG. 4. Intensity distribution in a plane orthogonal to thaxis
well with the beginning of the zone where the matle 1 for different distances to the CD. The figures correspond to the
exists. In this image there are not abrupt intensity changes aistancesa) z=3 cm, (b) z=6 c¢cm, (c) z=7 cm, (d) z=9 cm, (e)
the beginning nor the end of the zone for the mode2. z=12 cm, andf) z=14 cm.

®
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140 CD on thez axis, which blocks the intense beam propagating

along the axis. It is shown that some centimeters beyond the
obstacle, the beam is self-reconstructed. This self-

100 reconstruction is a characteristic of the nondiffracting beams,
which has been extensively studied in the literafl&®].

IV. DISCUSSION AND CONCLUSIONS

Intensity {a.u]

3 8 8 &

In this paper we study the propagation of spiral fields. We
decomposed the spiral field in harmonic compondnts,
H\ “modes”), and found that thenth component generates a

“J \J‘J v \J Bessel beamE,~exp(nd')J,(27nr'/ry) that propagates
W along thez axis without broadening, i.e., the spiral field gen-
20 erate a dark nondiffracting beam whose radius is a fraction of
- AY
2 4

_;‘/c

Pixels » ———— the pitch ¢,) of the spiral. The proportion of the total energy
6

14 16 . . .
12 associated to each mode depends on the Fourier coefficients

Cc_,. Thatis, it depends on the detailed structure of the mask
FIG. 5. Evolution of the nondiffracting beam along thexis.  used for generating the spiral field. In general, it is physically
Note the abrupt intensity changezt6 cm that coincides with the reasonably to expect that the dominant mode willnzel,

10
Z[cm)

beginning of the mode=1. and that perhaps, some other modes for small values of
will be present.
calculated above. Evidently, since the pitely)(of our spiral Also, we demonstrated that each mode is located in a

is very small, it is not possible to observe the dark regionprecise portion of thez axis given by the formula
inside the bright annulus, because this would imply to re{rq/n\)Ryin<z<(ro/M\)Ryax, Where Ry, and Ry the
solve a fraction of micron{0.3r). minimum and maximum spiral radius, respectively. Our cal-

Figure 5 shows the evolution of the nondiffracting beamculations are based on theethod of the stationary phase
profile along thez axis. Again this figure shows the abrupt which applies when the parameter=R/r) is large.

intensity change at=6 cm that coincides with the begin- In order to support our theoretical conclusions we per-
ning of the moden= 1. In this figure it is not clear to see the formed some experiments using the plastic cover of a record-
growth of the light intensity ag*>—predicted by Eq(14—  able compact diskCD) as a mask to modulate an expanded

inside the region corresponding to a mode. Probably, this isaser beam. For a CB~10%, thus the second order approxi-
due to mode superposition in the central region fram mation to the diffracted field is FOtimes smaller than the
=3 cm toz=8 cm. We have no explanation for the intensity first order approximation used in our calculations. Therefore,
decrease at the end of mode=1 aroundz=16 cm. the application of thenethod of the stationary phase first
Figure 6 shows an opaque obstacle placed in front of therder is absolutely justified.
Our experimental results are shown in the Figs. 3—6. The
Nondiffracting images acquired with a digital camera show a very narrow
light beam(with lateral dimensions of the order of microns
propagating several centimeters without broadening along
the disk axis. In the images it is clearly observed that the
nondiffracting beam has an abrupt beginning and an abrupt

beam

\

—>
end that coincidegwith an accuracy of the order millime-
ters with the theoretical values predicted for the modes
Plane =1 and n=3. Also, we observed the characteristic self-
wave reconstruction property of nondiffracting beams.
= Evidently, since only a very little of the total energy of the
input beam is diffracted by the plastic cover, its efficiency to
— generate high-order nondiffracting modes is not very high. A

higher diffraction efficiency can be achieved by light reflec-

tion on an entire C0i.e., without taking off the metal layer
Obstacle As a final remark, we have to mention that an extremely

'f‘ intense nondiffracting beam can be generated by reflection

CD using sun light. In this case, the wavelength dependence of

the expression r/n\) Ryin<z<(ro/N\)Rnax Can be easily
FIG. 6. Obstacle blocking the intense beam propagating alon@bserved. Also, using a digital versatile dis$RVD), for
the axis. Some centimeters beyond the obstacle, the beam is selfthich typically rg~0.7 um, the zone-pitch dependence for
reconstructed. the different modes can be verified.
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